GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS - COMPONENT 1 (FOUNDATION TIER) C300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

SUMMER 2022 MARK SCHEME

Component 1: Foundation Tier	Mark	Comment
$\text { 1. (a)(i) } 1200$	B1	
$\text { 1. (a)(ii) } 0.6(00)$	B1	Ignore trailing zeros; Accept $\frac{6}{10}$ oe
1. (a)(iii)	B1	
1. (a)(iv)	B1	
$\begin{aligned} & \text { 1. (b)(i) } \\ & \quad 44(\%) \end{aligned}$	B1	
$\text { 1. (b)(ii) }{ }_{0.87}$	B1	
$\text { 1. (c) } 7$	B1	Accept ± 7; allow -7; Do not accept $7 \times 7=49$ or just 7×7
	(7)	
2. (a) likely and no others options indicated	B1	
2. (b)(i) Arrow marked at 0	B1	Allow clear intention to indicate 0
2. (b)(ii) Arrow marked at $\frac{1}{3}$	B1	Allow clear intention to indicate $\frac{1}{3}$
	(3)	
3. (a) 0.315 indicated	B1	
3. (b) $\begin{aligned} & (48 \div 4=) 12 \\ & (45 \div 5) \times 2 \\ & 18 \\ & (80+12-18=) 74 \end{aligned}$	B1 M1 A1 B1	May be embedded May be embedded; $80+12-18$ or $80-18+12$ earns B1 M1 A1 FT 'their derived 12 ' and 'their derived 18 '
	(5)	

\begin{tabular}{|c|c|c|}
\hline 7. (a) $(300 \div 100) \times 8$ oe (£)24(.00) \& M1

A1 \& | Full method; may be in stages; may be a build-up method e.g. $' 1 \%=3,2 \%=3+3,4 \%=6+6,8 \%=12+12 \prime$ or ' $10 \%=30,5 \%=15,1 \%=3,15+9$ ' |
| :--- |
| Allow £24.00p or 2400p; |
| mark final answer |

\hline | 7. (b) |
| :--- |
| $(15 \div 3=)(£) 5(.00)$ oe $8 \div 10 \times 6$ or $800 \div 10 \times 6$ oe |
| (£)4.8(0) or 480(p) $(4.80+5=)(£) 9.8(0) \text { or } 980(\mathrm{p})$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| B1 | \& | If units are given they must be correct; |
| :--- |
| May be a build-up method e.g. $10 \%=0.80,50 \%=4,10 \%+50 \%=0.80+4$ |
| Allow for $\frac{60}{100} \times 800$ or $\frac{60}{100} \times 8$ |
| CAO; implies M1 |
| FT 'their 5' + 'their 4.8(0)' providing correct method shown for each |
| Allow £9.80p; correct answer implies 4 marks provided not from wrong working; |
| mark final answer |

\hline | Alternative method $\begin{aligned} & (15 \div 3 \times 2=)(£) 10(.00) \text { oe } \\ & 8 \div 10 \times 4 \text { or } 800 \div 10 \times 4 \text { oe } \end{aligned}$ |
| :--- |
| (£)3.2(0)or 320(p) $(15+8-10-3.20=)$ |
| (£)9.8(0) or 980(p) | \& | B1 |
| :--- |
| M1 |
| A1 |
| B1 | \& | May be a build-up method e.g. $10 \%=0.80,50 \%=4,50 \%-10 \%=4-0.80$ |
| :--- |
| Allow for $\frac{40}{100} \times 800$ or $\frac{40}{100} \times 8$ |
| CAO; implies M1 |
| FT 23 - 'their 10' + 'their 3.2(0)' providing correct method shown for each |
| Allow £9.80p; correct answer implies 4 marks provided not from wrong working; |
| mark final answer |

\hline \& (6) \&

\hline
\end{tabular}

8. (a) $9 \times 6.5 \text { oe, si }$ (£)58.5(0)	M1 A1	May be in stages; may be a build-up method but must clearly be for 9×6.5 not e.g. 9×6 CAO
8. (b) $\frac{314-160}{14} \text { oe, si }$ (£) 11 (.00 per hour)	M2 A1	May be in stages; may use a build-up approach to find how many 14 's are in 154 M1 for sight of $314-160(=154)$ CAO
	(5)	
9. (a) $x+8$	B1	mark final answer;
9. (b) $\begin{aligned} & 6 \times x+10(x+8) \\ & 6 \times x+10 \times x+80 \\ & 16 x+80 \end{aligned}$	M1 M1 A1	FT 'their $x+8$ ', need not be binomial FT 'their $x+8$ ', providing it is binomial FT 'their $6 x+a x+b$ ', for non-zero a, b; ignore attempts to factorise after correct answer seen; If no marks award SC2 for $(6 x+6(x+8) \rightarrow) 6 x+6 x+48$ and $12 x+48$ or $(10 x+6(x+8) \rightarrow) 10 x+6 x+48$ and $16 x+48$ or $(10 x+10(x+8) \rightarrow) 10 x+10 x+80$ and $20 x+$ 80 or award SC1 for the correct expansion of ' $10 \times$ their $(x+8)$ ' providing their $(x+8)$ is binomial or for the correct expansion of $10(x+8)$ or $6(x+8)$
	(4)	
10. $\begin{aligned} & \left(2^{3}=8 \mathrm{si}\right. \\ & \left(6^{2}=\right) 36 \mathrm{si} \\ & \frac{2}{9} \text { final answer } \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	FT $\frac{\text { 'their 8' }}{\text { 'their } 36 \text { ' }}$ simplified to a fraction in lowest terms; NB B0 if $\frac{\text { 'their 8' }}{\text { 'their } 36 \text { ' }}$ is already in lowest terms
	(3)	

\begin{tabular}{|c|c|c|}
\hline 11. (a) \begin{tabular}{l}
12, 13, 14, 14, 17 OR \\
12, 14, 14, 15, 17 OR \\
12, 14, 14, 16, 17
\end{tabular} \& B2 \& \begin{tabular}{l}
Ages can be in any order for B2 \\
B1 for a correct interpretation of the range or mode si e.g. \\
eldest child 17 indicated and no child younger than 12 given (range) \\
or \\
more than 1 child aged 14 indicated and no other mode (mode)
\end{tabular} \\
\hline \begin{tabular}{l}
11. (b) \\
Uses only the cost of \\
1 Mega Burger, 1 Chicken Burger \\
1 Fish Pie, 1 Vegetarian Lasagne \\
Uses an appropriate calculation e.g.
\[
\begin{array}{ll}
9+9+10+7 \& \text { or } \\
48-7-6 \& \text { or } \\
50-8-7 \&
\end{array}
\] \\
(£)35(.00)
\end{tabular} \& B1
M1

A1 \& | e.g. |
| :--- |
| does not include the $£ 7(.25)$ and $£ 6(.30)$ in their calculation for the bill |
| FT 'their 4 list choices'; |
| allow one incorrect estimate out of 4 or 6 e.g. $\begin{aligned} & 9+9+9+7 \text { or } \\ & 9+7.20+9+6.30+9.90+6.80 \end{aligned}$ |
| allow e.g. $9+7+9+6+10+7$ |
| OR rounding to the nearest 10p e.g. $\begin{aligned} & 9+9+9.9+6.8 \text { or } \\ & 9+7.30+9+6.30+9.90+6.80 \end{aligned}$ |
| OR rounding to the nearest 50 p e.g. $9+7.50+9+6.50+10+7$ |
| CAO; does not imply M1; not from wrong working |
| if B0 M1 award SC1 |
| for ($£$) $35(.00$) |
| (from e.g. $9+7+9+10$ discarding the two cheapest items) |
| or for (£)48(.00) $\text { (from e.g. } 9+7+9+6+10+7 \text {) }$ |
| or for ($£$) $49(.00$) |
| (from $9+7.50+9+6.50+10+7$) |

\hline \& (5) \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
12. (a)
\[
432 \div 12
\] \\
(£) 36
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& May be awarded for a convincing build up method e.g. counting on in 12s \\
\hline 12. (b)
\[
\begin{aligned}
\& \text { Sight of }(30 \times 20=) 600(p) \text { or } \\
\& (30 \times 0.2(0)=)(£) 6(.00) \\
\& \text { Sight of } 500 \times 14 \text { or } 500 \times 0.14 \text { oe } \\
\& 7000(p) \text { or }(£) 70(.00) \\
\& (7000+600=) 7600(p) \text { or } \\
\& (70.00+6.00=)(£) 76(.00) \\
\& (V A T=) 380(p) \text { or }(£) 3.8(0)
\end{aligned}
\] \& B1
M1
A1
B1

B1

B1 \& | Accept 5×14; may be implied |
| :--- |
| CAO |
| FT 'their 500×14 ' + 'their derived 6' oe, providing M1 awarded and 30×20 oe attempted; may be implied in later work; |
| FT 5% of 'their 7600 ' or 'their $76(.00)$ ' providing that 'their 7600 or 76 ' is from an attempt to sum both the fixed charge and electricity for 30 days |
| may be embedded e.g. B1 for $7600+380$ |
| FT providing previous B1 B1 awarded; if units are stated they must be correct; correct answer implies previous B1 |

\hline \& (8) \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
14 .(\mathrm{a})(\mathrm{i}) \\
9: 7
\end{array}
\] \& B2 \& \begin{tabular}{l}
B1 for sight of any simplified ratio not in simplest form or for 7: 9; allow non-integer values for B1 \\
NB \(45000: 35000\) is BO
\end{tabular} \\
\hline \begin{tabular}{l}
14. (a)(ii)
\[
\begin{aligned}
\& 21000 \div 7 \times 9-21000 \\
\&(=27000-21000) \text { oe si }
\end{aligned}
\] \\
or
\[
\begin{aligned}
\& 21000 \div 7 \times(9-7) \\
\&(=3000 \times 2) \text { oe si }
\end{aligned}
\] \\
(£)6000
\end{tabular} \& M2

A1 \& | For M2 or M1, allow 45000 and 35000 used correctly or any correct ratio whether in simplest form or not OR |
| :--- |
| FT 'their $9: 7$ ', providing B1 awarded in (a)(i) |
| M1 for $21000 \div 7 \times 9$ ($=27000$) oe or $21000 \div 7 \times 16-21000(=27000)$ oe or $21000 \div 7 \times 16(=48000)$ oe |
| CAO |

\hline 14. (b)

$$
\begin{aligned}
& 21000+(35000 \div 10) \times 3 \text { oe, si } \\
& \text { (£) } 31500
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& $(=21000+10500) ;$ may be in stages

\hline \& (7) \&

\hline 15.

\[
$$
\begin{aligned}
& t-5=3 n \text { oe, si } \\
& \text { or } \frac{t}{3}=\frac{5}{3}+n \\
& n=\frac{t-5}{3} \text { or } \frac{t}{3}-\frac{5}{3}=n \text { oe }
\end{aligned}
$$

\] \& B1 \& | Isolates term in n; allow e.g. $-3 n=5-t$ or correctly divides through by 3 |
| :--- |
| May be unsimplified; allow e.g. $n=(t-5) \div 3$ or $n=\frac{5-t}{-3}$ |
| If no marks, award SC1 for $n=\frac{t+5}{3}$ or $\frac{t-5}{3}$ (subject omitted) |

\hline \& (2) \&

\hline
\end{tabular}

17. (a) $1-\left(\frac{6}{14}+\frac{5}{14}\right)$ oe, si $\frac{3}{14}$ or equivalent fraction	M2 A1	M1 for $\frac{6}{14}+\frac{5}{14}$ oe, si If M1 A0, award SC1 for a final answer of $\frac{11}{14}$ or equivalent fraction
17. (b) 540 (minutes) or $(324 \div 60) \times 5 \div 3$ oe 9 (hours)	B2	may be seen in stages B1 for $(324 \div 3) \times 5$ oe or for $324+(324 \div 60) \times 40(=324+216)$ oe OR for $(324 \div 60) \times 5$ oe or for $(324 \div 60) \div 3$ oe OR for sight of $(324 \div 60=) 5.4$ or $5 \frac{24}{60}$ (hours) 9 (hours) implies 3 marks provided not from wrong working. If no marks, award SC1 for their derived time in minutes converted correctly to hours; their time in minutes and the division by 60 must be seen
	(6)	

18. (a) Valid criticism e.g. 'There should be no gaps between the bars.'	E1	Allow e.g. 'Some of the values overlap.' or 'There should not be gaps.' or 'The bars should all touch.' or 'The 12.4 appears on two bars.' or 'They have the same numbers twice.' or 'The bars should be together.' Ignore irrelevant embellishments but do not allow a contradiction or an incorrect statement e.g. 'It goes 12 to 12.4 and then 12.4 again. It should have gone on to 12.5 ' is E0
18. (b) (Frequencies of) 9, 12, 4, 5 si At least 1 of $\begin{aligned} & 9 \times(360 \div 30) \\ & 12 \times(360 \div 30) \\ & 4 \times(360 \div 30) \\ & 5 \times(360 \div 30) \end{aligned}$ For at least 3 of (Angles) B 108, F 144, W 48, C 60 Correct, labelled pie chart with no incorrect angles seen in working	B1 M1 M1 A2	Question requires working to be shown FT 'their frequencies'; allow for e.g. 9×12; allow for $360 \div 30=12$ and sight of one correct angle e.g. 108 or sight of at least 2 correct angles Allow tolerance of $\pm 2^{\circ}$ for all angles; Lines must be ruled If angles stated: measure 3 angles and if in tolerance and no incorrect angles or percentages have been stated, allow the A2 If 3 or 4 angles not stated: measure all 4 angles and if all 4 in tolerance allow the A2 otherwise award A1 A1 FT for at least 2 out of their 4 angles in tolerance; may be unlabelled NB B1 M1 M0 A1 is possible

20.* Second and fifth statements indicated and no others	B2	B1 for each if only two statements indicated OR for exactly three statements indicated of which two are correct
	(2)	
21.*(a) $\begin{aligned} & \frac{1}{3} \times \pi \times 15^{2} \times 30 \mathrm{oe}, \mathrm{si} \\ & \frac{1}{3} \times \pi \times 225 \times 30 \text { oe, si } \\ & 2250 \pi\left(\mathrm{~cm}^{3}\right) \end{aligned}$	M1 A1 A1	Allow e.g. 3.14 substituted for π; may be in stages; Allow e.g. 3.14 substituted for π; may be in stages FT 'their 225', M1 A0 A1 is possible; Must be a multiple of π; do not ignore subsequent evaluation of e.g. 2250×3.14
21. (b) radius 3 cm or diameter 6 cm and height 6 cm si For the plan: draws a circle, radius 3 cm and for the side elevation: draws an isosceles triangle with base 6 cm and height 6 cm	B1 B3	Correct use of the scale; may be implied by correctly drawn plan and elevation; FT 'their stated radius and their stated height' OR if no statement or calculation for radius and height, FT 'their diameter = their height = their base' For B3, circle must be drawn with compasses and triangle must be ruled B2 FT for either an accurately drawn, correct plan or an accurately drawn, correct elevation FT 'their stated radius and their stated height' OR if no statement or calculation for radius and height, FT 'their diameter = their base' or 'their base $=$ their height' or 'their diameter = their height' OR B2 FT for good sketches of both the correct plan and elevation or one sketch and one drawn accurately FT 'their stated radius and their stated height' OR if no statement or calculation for radius and height, FT 'their diameter = their height = their base' B1 for a circular plan with any radius or for a side elevation that is an isosceles triangle with any dimensions ; allow good freehand for B1 but base of triangle must not be clearly curved If B1 B0 or B0 B0, award SC1 for an accurate plan and elevation drawn in incorrect positions
	(7)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
22.* (a) \\
Uniform scale used on vertical axis \\
Line starting at (0,225) \\
Single straight line with correct gradient si \\
Ruled, single straight line ending at \((45,0)\)
\end{tabular} \& B1
B1
B1

B1 \& | Plots accurate to within $1 / 2$ a small square but mark intent |
| :--- |
| Must allow plots up to 225 litres and start at zero |
| According to their scale |
| e.g. single straight line passing through any two of (10, 175), (20, 125), (30, 75), (40,25), (45,0) according to their scale |
| or line drawn using e.g. 50 litres $=10$ minutes to plot and join points |

\hline \[
$$
\begin{aligned}
& \text { 22. (b) } \\
& (225 \div 10) \times 6 \text { or } 135 \text { OR } \\
& (225 \div 10) \times 4 \text { or } 90 \text { OR } \\
& (225 \div 10) \times 4 \div 5 \text { or }(45 \div 10) \times 4 \text { oe }
\end{aligned}
$$

\] \& M1 \& | Ignore units if stated |
| :--- |
| Equivalent calculations for M1 e.g. $\begin{aligned} & (50 \%+10 \%=) 112.5+22.5 \text { or } \\ & (50 \%-10 \%=) 112.5-22.5 \end{aligned}$ |

\hline 18 (minutes) \& A1 \& | if 90 or 135 found and using correct graph accept 17-19 mins |
| :--- |
| FT 'their single straight line' read at a volume $=$ 135 providing that it has negative gradient; allow good freehand here |
| Accept 18 mins even if graph incorrect as can be done without it e.g. $90 \div 5$ |
| 18 (mins) without working implies M1 A1 |

\hline \& (6) \&

\hline
\end{tabular}

$\begin{array}{\|cl\|} \hline 23 .{ }^{*}(\mathrm{a}) & \\ & 0.7 \text { AND } \\ & 0.9 \text { correctly placed } \\ \hline \end{array}$			B1			
0.18 oe			M1 A1	ignore attem ignore embe incorrect	ts to conv shments	to a different form; as unlikely, even if
0.04 oe			M1 A1	ignore attem ignore embe incorrect	ts to conv shments	to a different form; as unlikely, even if
			(5)			
24.* 2(h) oe OR $\quad \begin{aligned} & 8 \mathrm{~m} \\ & \\ & \\ & 2000\end{aligned}$ $1 / 2$ (120 (min $\times 6$ chines 3000 erasers per ur) or 30 ($\div 8$ $\div 2 \div 6 \times 8=)$ our or better s)	M2	Operations stages For complet M1 for partia using any tw operations OR M1 for 300 $3000 \div 120$ If units are	ay be don correct m correct m correct $00 \div 2 \div$ $6 \times 8 \text { oe }$ en they	any order and in od e.g. $\frac{2}{3} \div \frac{4}{3}$ or $\frac{2}{3} \times \frac{3}{4}$ od using time and ations and no wrong 8 or be correct
Alternative method Complete method e.g.			M2	Correct step(s) to 1000 and correct step(s) to 8 or e.g.		
Machines		Hours				
6	3000	2				
2	1000	2		Machines	Erasers	Hours
8	1000	1/2		6	3000	2
				1	500	2
or				1	250	1
Machines	Erasers	Hours		and (time needed is to make) $1000 \div 8=125$ (erasers per machine) oe		
6	3000	2				
8	4000	2				
8	1000	1/2				
				M1 for finding hour or (tim (erasers per e.g.	1 machin needed is machine)	makes 250 erasers per make) $1000 \div 8=125$ ny one correct step
				Machines	Erasers	Hours
				6	3000	2
				1	500	2
1/2 (hour) or 30 (mins)			A1	If units are given they must be correct		
			(3)			

25.*(a) $8 x^{2}-4 x+10 x-5$ $8 x^{2}+6 x-5$	B2 B1	B1 for any two terms correct; $n x^{2}+6 x+m$ implies two terms correct if not from wrong working Implies previous B2; FT for equivalent level of difficulty, providing a quadratic expression with 4 terms to consider and like terms in x to collect with opposite signs mark final answer except ignore ' $=0$ '
25. (b)(i) $(x-3)(x-7) \text { oe }$	B2	If not B 2 , award B 1 for $(x \ldots 3)(x \ldots 7)$ or for $x(x-7)-3(x-7)$ oe; ignore ${ }^{\prime}=0$ ' If no marks, award SC1 for factors $x-3$ and $x-7$ stated but not as a product
$\begin{aligned} & \text { 25. (b)(ii) } \\ & x=3, x=7 \end{aligned}$	B1	STRICT FT from 'their $(x \ldots a)(x \ldots b)$ ' where a and b are constants;
	(6)	

26.*(a) (Proportion of marked moths in sample is) $\frac{9}{12}\left(=\frac{3}{4}\right) \text { oe, si or }$ (Proportion of 2nd sample marked is) $\frac{9}{30}\left(=\frac{3}{10}\right)$ oe, si Correct completion e.g. $\frac{9}{30}=\frac{12}{40}$ (so 40 moths) OR $\frac{9}{12}=\frac{30}{40}$ (so 40 moths) OR 75% (of population) is 30 (moths) so 100% (of population) is $30+10=40$ (moths) oe	B1	Allow for e.g. '9 out of 12 (marked)' or '9 (marked) out of 30' allow for sight of e.g. $\frac{12 \times 30}{9}(=40)$ Implies the first B1; Allow for - showing ' 12 out of 40 ' and ' 9 out of 30 ' are both ' 3 out of 10 ' or - $\frac{9}{12}=\frac{30}{x}$ and $9 x=360, x=40$ oe $\mathrm{NB} \frac{12 \times 30}{9}=\frac{360}{9}=40$ is B 2
26. (b) Valid comment based on sample or population size e.g. 'It may not be very reliable as he only captured 12 moths in his first sample.' or 'Some of the moths may have been eaten so the results may not be accurate.'	E1	Allow e.g. 'Not reliable because the population would be bigger at different times of the year.' Allow comments which refer to the experiment needing to be repeated E1 for e.g. 'Somewhat reliable because it was done once and it could be different if repeated again' or 'Not reliable as he needs to do it more often.' Must not contain contradictions/errors but may contain irrelevant statements E0 for e.g. 'Not very reliable as there could have been more moths.' or 'Unlikely (to be reliable) because it has only been tested twice' or 'Not reliable because he could keep catching the same moths over and over.'
	(3)	

