## GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS - COMPONENT 1 (FOUNDATION TIER) C300U10-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS
AUTUMN 2022 MARK SCHEME


| 4.(a) $\begin{aligned} & 80-65 \text { or } 180-100-65 \\ & \text { or } 360-(100+100+80+65) \text { oe } \\ & (w=) 15 \end{aligned}$ | M1 <br> A1 | Check diagram. Answer line takes precedence. May be seen in stages |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 4.(b) } 70 \\ & (x=) 70 \\ & 180-2 \times 70 \text { or } 180-70-x \\ & (y=) 40 \end{aligned}$ | B1 <br> M1 <br> A1 | Check diagram. Answer line takes precedence. <br> FT 'their $x$ '. May be seen in stages. |
|  | (5) |  |
| $\begin{aligned} & \text { 5. } \\ & \text { (Number of CDs }=\text { ) } 120 \div 5 \times 3 \text { oe } \\ & 72 \\ & \text { (Number of Vinyl=) } \frac{15}{100} \times 120 \quad \text { oe } \\ & 18 \\ & \text { (Number of digital downloads = } \\ & 120-72-18=) 30 \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> B1 | Must be a complete method which would lead to the correct answer. <br> FT providing at least M1 M1 previously awarded and their ' $72+18$ ' $<120$ |
| Alternative method: $\frac{3}{5}=\frac{60}{100} \text { or } \frac{3}{5} \times 100$ <br> (Percentage of albums that are CDs =) 60\% <br> (Percentage of albums that are digital downloads $=100-60-15=$ ) $25 \%$ <br> $\frac{25}{100} \times 120$ or $120 \div 4$ oe <br> 30 | M1 <br> A1 <br> B1 <br> M1 <br> A1 | FT 'their 60\%' provided unambiguously stated. <br> FT 'their 25\%' provided not 50\%. <br> FT |
|  | (5) |  |
| $\begin{aligned} & \hline 6 .(a) \\ & 16 x \end{aligned}$ | B3 | B2 for $4 x+6 \times 2 x$ oe <br> B1 for any one of the following: <br> - (each large orange costs) $2 x$ (pence) <br> - (total cost of large oranges is) $6 \times 2 x$ or $2 \times 6 x$ or $12 x$ (pence) <br> - (total cost of small oranges is) $4 x$ (pence) |
| $\begin{aligned} & 6 .(\mathrm{b}) \\ & 25 y \text { or } \frac{100 y}{4} \end{aligned}$ | B2 | Allow $100 y \div 4$. <br> If units are given, they must be correct for B2. B1 for $(£) \frac{y}{4}$ or $(£) y \div 4$ or for sight of $100 y$ |
|  | (5) |  |


| 7.(a)(i) <br> Valid explanation e.g. <br> 'He worked out $2 \times(£) 3.20$ ' oe | E1 | Accept e.g. 'He doubled the cost of 2 chicken pieces' <br> Do not accept e.g. ' $2 \times 2$ ' only |
| :---: | :---: | :---: |
| 7.(a)(ii) <br> Valid explanation e.g. <br> '(If charged for) one chicken piece and three chicken pieces (it would cost $£ 6.20$ )' | E1 | Accept $4.20+2(.00)=6.20$ oe <br> Do not allow '(£)6.20' only. |
| $\begin{aligned} & \text { 7.(b) } \\ & 600 \text { (trays) } \end{aligned}$ | B2 | B1 for any one of the following: <br> - $2 \times(£) 33+(£) 17$ <br> - 250 (trays) $\times 2+100$ (trays) <br> - finding a number of trays that cost $£ 83$ (not 600) <br> e.g. $4 \times 100$ (trays) $+3 \times 25$ (trays) $=475$ (trays) |
|  | (4) |  |
| 8.(a) <br> 2 and -18 OR -2 and 18 | B2 | B1 for two integers, one positive and one negative, that satisfy one of the criteria |
| 8.(b) <br> 2 and -3 and -4 | B2 | B1 for three integers, two of which are negative, that satisfy one of the criteria <br> e.g. -2 and -3 and 0 <br> -4 and -1 and 0 |
|  | (4) |  |
| $\begin{aligned} & \text { 9.(a) } \\ & 3 \times 75 \\ & 225(\mathrm{~cm}) \text { oe } \end{aligned}$ | M1 <br> A1 | If units given, they must be correct. <br> If no marks, award M1 for an unsupported 2.25. |
| $\begin{aligned} & \text { 9.(b) } \\ & 375 \div 75 \\ & 5(\mathrm{~mm}) \\ & (5 \div 10=) 0.5(\mathrm{~cm}) \end{aligned}$ | M1 <br> A1 <br> B1 | FT 'their 5 ' $\div 10$. Correct answer implies 3 marks. |
| Alternative method: $\begin{aligned} & (375 \div 10=) 37.5(\mathrm{~cm}) \\ & 37.5 \div 75 \\ & 0.5(\mathrm{~cm}) \end{aligned}$ | B1 <br> M1 <br> A1 | $\begin{aligned} & F T \text { 'their } 37.5 \text { ' } \\ & F T \end{aligned}$ |
| Alternative method: <br> $1 \mathrm{~cm} \equiv 750 \mathrm{~mm}$ $375 \div 750$ <br> 0.5 (cm) | B1 <br> M1 <br> A1 | Units may be implied in further working. FT 'their 750'. <br> FT |
| 9.(c) <br> Valid explanation explaining the scale factor can be used for finding lengths or that the number of wheels remains the same e.g. 'Both the train and the model have 6 wheels'. <br> 'The ratio is only used for scaling lengths (not numbers of things).' | E1 | Accept other correct statements e.g. 'There will still be 6 wheels.' <br> Ignore superfluous statements. <br> e.g. 'It doesn't make sense to multiply wheels by length of 75 '. |
|  | (6) |  |


| $\begin{aligned} & \text { 10.(a) } \\ & 35 \times(£) 20=(£) 700 \end{aligned}$ | B1 |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 10.(b)(i) } \\ & (£) 700+(38-35) \times(£) 20 \times 1.5 \text { oe } \end{aligned}$ <br> (£) 790 | M1 <br> A1 | $\begin{aligned} & \text { e.g. } 700+3 \times 30 \text { or } \\ & 700+4.5 \times 20 \text { or } \\ & 38 \times 20+3 \times 20 \times 0.5 \end{aligned}$ |
| ```10.(b)(ii) (£) 1060 - (£)700 oe (£)360 \(360 \div 30\) oe 12 (hours)``` | M1 <br> A1 <br> M1 <br> A1 | FT 'their 360' providing M1 awarded and 'their overtime rate' from (b)(i) provided $\neq 20$; may be implied by e.g. a build-up method adding 30 until 'their 360 ' is reached <br> FT <br> If no marks, award SC2 for an answer of 18 (from $1060 \div 20=53$, leading to $53-35$ ) |
| $\begin{aligned} & 10 .(\mathrm{c})(\mathrm{i}) \\ & \frac{6}{100} \times(£) 700=42(>35) \end{aligned}$ <br> OR <br> $£ 1$ per hour extra and $\frac{1}{20}=\frac{5}{100}=5 \%(<6 \%)$ oe <br> OR $\frac{35}{700}=\frac{5}{100}=5 \%(<6 \%) \text { oe }$ <br> OR <br> $10 \%($ of $£ 700)=(£) 70$ <br> $5 \%($ of $£ 700)=(£) 35$, increase is $5 \% ~(<6 \%)$ <br> OR <br> $\frac{6}{100} \times(£) 20=1.2(0)(>1)$ with sight of <br> £1 per hour extra | B2 | B1 for any one of the following: <br> - $\frac{6}{100} \times(£) 700$ <br> - $£ 1$ per hour extra <br> - $\frac{35}{700}$ oe |
| 10.(c)(ii) <br> Valid explanation e.g. <br> 'She might have been earning a lot less per hour than Nico before the pay increase.' | E1 | Allow e.g. 'It would be true if she was earning the same as Nico.' <br> 'Dana might not have the same (initial) pay as Nico'. <br> 'It depends on what they were earning initially'. <br> Accept examples which show Dana's statement might not be correct e.g. Dana's initial pay = £500. <br> E0 for reference to only overtime. |
|  | (10) |  |


| 11. <br> $1-0.75-0.1$ oe <br> 0.15 | M1 | Table takes precedence. <br> May be seen in stages |
| :--- | :--- | :--- |
| 12.(a) <br> $-3,-1$ | (2) | If no marks, award SC1 for an answer of 0.24. |
| $12 .(b)$ <br> Correct line from at least <br> $(-1,-5)$ to $(1,3)$ | B2 | B1 for each |


| 16. $180-(360 \div 10) \text { or }(180 \times(10-2)) \div 10$ $144\left(^{\circ}\right)$ | M2 | May be in stages <br> M1 for one of the following: <br> - $360 \div 10$ <br> - $36\left({ }^{\circ}\right)$ <br> - $180 \times(10-2)$ <br> - $1440\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: |
|  | (3) |  |
| 17. <br> $5 \times 4.2-(3.6+3.4+2.9+5.1) \mathrm{oe}$ <br> 6 (kg) | M2 | May be in stages <br> M1 for total mass $=5 \times 4.2(=21)$ or for $\frac{3.6+3.4+2.9+5.1+\ldots}{5}=4.2$ oe <br> A1 for sight of 21 or for correct answer to 'their derived 21' - 'their 15' provided at least M1 awarded. |
|  | (4) |  |
| 18.(a) <br> Correct triangle with coordinates: $(-1,4),(-6,3),(-3,1)$ | B2 | B1 for: <br> - 3 points correctly plotted but not joined, <br> - a triangle with 2 points correctly plotted, <br> - a correct reflection in $y=k, k \neq 4$. |
| 18.(b) Correct triangle with coordinates $(5,4),(0,5),(3,7)$ | B2 | B1 for: <br> - 3 points correctly plotted but not joined, <br> - a triangle with 2 points correctly plotted, <br> - a translation $\binom{6}{m}, m \neq 0$, <br> - a translation $\binom{n}{0}, n \neq 6$, <br> - a translation $\binom{0}{6}$. <br> Treat translation of triangle $B$ as a misread and award B1 for $(5,4)(0,3)(3,1)$. <br> FT 'their triangle $B$ '. |
|  | (4) |  |


| 19. <br> $240 \times 2.5$ <br> 600 (Canadian dollars) <br> $162000 \div 81$ <br> 2000 (Canadian dollars) <br> $2000-600=1400(>1000)$ | M 1 |  |
| :--- | :---: | :--- |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
20.*(a) \\
Second and third statements indicated and no others
\end{tabular} \& B2 \& \begin{tabular}{l}
Award B1 for one of the following: \\
- One correct statement and up to one incorrect statement indicated \\
- Two correct statements and exactly one incorrect statement indicated
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 20.(b) } \\
\& \text { (Area of cross-section }=\text { ) } \quad 1 / 2 \times 3 x \times x \\
\& \text { (Volume }=\text { ) } 1 / 2 \times 3 x \times x \times 4 \\
\& \\
\& 1 / 2 \times 3 x \times x \times 4=216 \text { oe } \\
\& x^{2}=216 \times 2 \div 4 \div 3(=36) \\
\& 6(\mathrm{~cm})
\end{aligned}
\] \& M1
M1

A1
M1

A1 \& | May be done in parts |
| :--- |
| Accept $1 / 2$ base x height oe |
| FT 'their $1 / 2 \times 3 x \times x^{\prime} \times 4$, provided at least two terms in $x$. |
| CAO |
| FT 'their $k^{\prime} \times x^{2}=216$ |
| Mark final answer. |
| FT |
| Final 2 marks can be awarded if trials used on an equation of the form 'their $k^{\prime} \times x^{2}=216$ to find a correct or correct FT answer. |
| If $x^{2}$ is a square number, $x$ must be given as a whole number. Otherwise, it may be written as an unsimplified surd. | <br>

\hline | Alternative method |
| :--- |
| (Area of cross-section =) $216 \div 4(=54)$ |
| (Area of cross-section =) $\quad 1 / 2 \times 3 x \times x$ |
| $1 / 2 \times 3 x \times x=54 \quad$ oe, $x^{2}=54 \times 2 \div 3(=36)$ |
| 6 (cm) | \& B1

M1
A1
M1

A1 \& | Accept $1 / 2$ base x height oe |
| :--- |
| CAO |
| FT 'their $k^{\prime} \times x^{2}=$ 'their 54' |
| Mark final answer. |
| FT |
| Final 2 marks can be awarded if trials used on an equation of the form 'their $k^{\prime} \times x^{2}=$ 'their 54' to find a correct or correct FT answer If $x^{2}$ is a square number, $x$ must be given as a whole number. Otherwise, it may be written as an unsimplified surd. | <br>

\hline \& \& | If no marks award SC3 for a complete correct method using trials leading to an answer of 6 |
| :--- |
| OR |
| SC2 for |
| a correct trial with height $>3$, e.g. $1 / 2 \times 15 \times 5 \times$ 4 (and comparison with 216) si OR a correct trial with height $>3$. e.g. $1 / 2 \times 15 \times 5$ and comparison with 54 si | <br>

\hline \& (7) \& <br>
\hline
\end{tabular}

| $\begin{aligned} & 21 . .^{*}(\mathrm{a}) \\ & 1 \leq \text { time difference } \leq 3 \end{aligned}$ | B2 | Not from wrong working <br> B1 for one end correct in the inequality or for sight of both values |
| :---: | :---: | :---: |
| 21.(b) |  | Accept a statement such as 'The van is always less than 6 m long/the maximum length acceptable' stated once only; may be written anywhere <br> If lengths are given, they must be within the appropriate limits. |
| Valid example for may be correct e.g. Van 590 cm AND trailer 198 cm | E1 | For the van accept any statement such as 'The van is always less than 6 m long/the maximum length acceptable' or any values satisfying: <br> $585 \mathrm{~cm} \leq$ length of the van < 595 cm <br> AND <br> 195 cm s length of the trailer $\leq 200 \mathrm{~cm}$ <br> Allow e.g. 'The trailer could be less than 200 (cm).' <br> Example might use the values given in the question ( 590 cm and 200 cm ) and not consider the values are rounded to the nearest 10 cm . |
| Valid example for may not be correct e.g. (Van 590 cm and) trailer 201 cm | E1 | (For the van accept any statement such as 'The van is always less than 6 m long' or any values satisfying: <br> 585 cm < length of the van < 595 cm AND) <br> 200 cm < length of the trailer < 205 cm Allow e.g. 'The trailer could be more than 200 (cm)/the maximum length acceptable' or 'the length of the trailer could be 205 (cm)'. |
|  | (4) |  |
| $\begin{aligned} & 22 . *(\mathrm{a}) \\ & 600000 \div 20 \text { or }\left(6 \times 10^{5}\right) \div(2 \times 10) \end{aligned}$ | M1 |  |
| $3 \times 10^{4}$ | A1 | Award M1 A0 for any one of the following: <br> - 30000 <br> - $0.3 \times 10^{5}$ |
| 22.(b) |  |  |
| $60 \times 3 \times 10^{8} \text { oe }$ | M1 | e.g. $300000000 \times 60$ |
| $180 \times 10^{8}$ or 18000000000 oe | A1 | CAO |
| $1.8(0) \times 10^{10}$ (litres per hour) | A1 | FT 'their $60 \times 3 \times 10^{8}$, provided M1 awarded. If no marks, award SC1 for $5 \times 10^{6}$ |
|  | (5) |  |
| $\begin{aligned} & 23 .{ }^{*}(\mathrm{a}) \\ & 55 \end{aligned}$ | B1 |  |
| $\begin{aligned} & 23 .(\mathrm{b}) \\ & 5 n-1 \text { or }-1+5 n \end{aligned}$ | B2 | Mark final answer <br> B1 for: <br> - $5 n+k$, where $k \neq-1$ <br> - a correct answer seen and then spoiled. <br> - an unsimplified expression which would lead to $5 n-1$ <br> Allow the use of other variables for $n$ for B1 or B2 |
|  | (3) |  |


| 24.* ${ }^{\text {a }}$ ) |  |  |
| :---: | :---: | :---: |
| $9.6 \div 12$ (= 0.8$)$ | M1 |  |
| $0.8 \div 8 \times 3$ | M1 | FT 'their 0.8 ' including place value error from conversion of kg to g |
| 0.3 (kg) or 300g | A1 | cao |
| Alternative method |  |  |
| 88:3:5 | B1 |  |
| 3 | M1 |  |
| $\overline{88+3+5}^{\times 9.6}$ |  |  |
| 0.3 (kg) or 300g | A1 | CAO |
| 24.(b) |  |  |
| (Total force = ) $1600 \times 0.1$ | M1 |  |
| 160 (N) | A1 |  |
| 24.(c) |  |  |
| Valid impact e.g. | E1 | Ignore any extraneous comments e.g. |
| 'The force would be less' |  | 'The pressure would increase, and the force will be lower'. |
|  | (6) |  |
| 25.* |  |  |
| $1008 \times 100$ or 1008 | M2 | M1 for one of the following: |
| $\frac{600}{60} \times 100 \text { or } \frac{1000}{0.6(0)}$ |  | - $\frac{1008}{6}(=168)$ (Calculating $10 \%$ of original value) |
| $\underline{1008} \times 10 \text { or } \underline{10080}$ |  | $\frac{1008}{60}(=16.8)$ (Calculating $1 \%$ of original value) |
| $\frac{6}{6} \times 10 \quad \text { or } \quad \frac{0}{6} \text { oe }$ |  | - $0.6 \times x=1008$ oe |
| (£)1680(.00) | A1 |  |
|  | (3) |  |


| 26.*(a) $15 x^{2}+21 x-20 x-28$ $15 x^{2}+x-28$ | B2 B1 | B1 for any three terms correct. <br> $m x^{2}+x+n$ implies middle two terms correct if not from wrong working <br> Mark final answer. <br> Implies previous B2. <br> FT their expression, provided it is a quadratic with 4 terms to consider and there are like terms to collect. |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 26.(b)(i) } \\ & 2 x y(x+6 y) \end{aligned}$ | B3 | Mark final answer. <br> B2 for any one of the following: <br> - A correct answer seen then spoiled <br> - $2 x\left(x y+6 y^{2}\right)$ <br> - $2 y\left(x^{2}+6 x y\right)$ <br> - $x y(2 x+12 y)$ <br> - $2 x y(x+m y)$ where $m \neq 0$ or $m \neq 6$ <br> - $2 x y(n x+6 y)$ where $n \neq 1$ or $n \neq 0$ <br> B1 for any one of the following: <br> - $2\left(x^{2} y+6 x y^{2}\right)$ <br> - $x\left(2 x y+12 y^{2}\right)$ <br> - $y\left(2 x^{2}+12 x y\right)$ <br> - $2 x\left(x y+m y^{2}\right)$ where $m \neq 0$ or $m \neq 6$ <br> - $2 y\left(x^{2}+m x y\right)$ where $m \neq 0$ or $m \neq 6$ <br> - $\quad x y(2 x+m y)$ where $m \neq 0$ or $m \neq 6$ <br> - $2 x\left(n x y+6 y^{2}\right)$ where $n \neq 1$ or $n \neq 0$ <br> - $2 y\left(n x^{2}+6 x y\right)$ where $n \neq 1$ or $n \neq 0$ <br> - $\quad x y(n x+12 y)$ where $n \neq 1$ or $n \neq 0$ <br> - $2 x y(x+\ldots)$ <br> - $2 x y(\ldots+6 y)$ |
| $\begin{aligned} & 26 . \text { (b)(ii) } \\ & (x-8)(x+8) \end{aligned}$ | B1 |  |
|  | (7) |  |

