## Mark Scheme (Results)

November 2022

Pearson Edexcel GCSE
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2022
Question Paper Log Number P68721
Publications Code 1MA1_1H_2211_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

## General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

## 7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths),
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers
Unless otherwise stated, when an answer is given as a range (eg $3.5-4.2$ ) then this is inclusive of the end points (eg 3.5, 4.2) and all numbers within the range

## 11 Number in brackets after a calculation

Where there is a number in brackets after a calculation eg $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas eg " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets eg [area] $\times 1.5$ : the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

14 Misread
If a candidate misreads a number from the question. eg uses 252 instead of 255 ; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

## Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
P process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 1 | $2^{2} \times 5^{3}$ | M1 | for a complete method to find prime factors, could be shown on a complete factor tree with no more than one error or by division by prime factors with no more than one error | Condone the inclusion of 1 for the method marks |
|  |  | M1 | for complete factorisation, eg 2, 2, 5, 5, 5 | Could be shown on a fully correct factor tree |
|  |  | A1 | for $2^{2} \times 5^{3}$ |  |
| 2 (a) | $3 \frac{17}{20}$ | M1 | for finding two fractions with a correct common denominator (multiple of 20), with at least one correct corresponding numerator, eg $\frac{12}{20}, \frac{5}{20}$ or $\frac{32}{20}, \frac{45}{20}$ | May be from $\frac{3}{5}$ and $\frac{1}{4}$ or from $\frac{8}{5}$ and $\frac{9}{4}$ |
|  |  | A1 | for $3 \frac{17}{20}$ or an equivalent mixed number SC B1 for an answer of 3.85 if M0 scored |  |
| (b) | shown | M1 | for $\frac{8}{3} \times \frac{1}{6}$ oe or $\frac{4}{9} \times \frac{6}{1}$ oe or $\frac{8}{3} \times \frac{9}{4}$ oe |  |
|  |  | A1 | for unsimplified fraction which could lead to $\frac{4}{9}$, eg $\frac{8}{18}$ or for $\frac{4}{3} \times \frac{1}{3}$ or $\frac{24}{9} \div 6$ or for unsimplified fraction which could lead to $2 \frac{2}{3}$, eg $\frac{24}{9}$ or for unsimplified fraction which could lead to 6 , eg $\frac{72}{12}$ |  |


| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 3 | $2^{6}$ | M1 A1 | for the start of a method of simplification, eg $2^{-5+8}\left(=2^{3}\right)$ or $2^{-5 \times 2}\left(=2^{-10}\right)$ or $2^{8 \times 2}\left(=2^{16}\right)$ cao <br> SC B1 for answer of 64 or $8^{2}$ or $4^{3}$ if M0 scored. |  |
| 4 | 0.00128 | M1 <br> A1 | for digits 128 <br> or for correct placement of the decimal point following one arithmetical error, eg $32 \times 4=138$ with an answer of 0.00138 <br> for 0.00128 or $1.28 \times 10^{-3}$ |  |
| 5 | 7500 | M1 <br> A1 | for method to find expected number of model B, eg $\frac{15}{80} \times 40000$ oe or $\frac{15}{" 23+15+30+12 "} \times 40000$ oe cao |  |



| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 7 | 1250 | P1 <br> A1 | for process to use area of base in the formula, eg $\frac{10000}{2 \times 4}$ cao |  |
| 8 | Pair of values | P1 <br> A1 | for at least 5 multiples of 5 (with no more than 1 incorrect) or for at least 5 multiples of 7 (with no more than 1 incorrect) or for $m=$ a multiple of 35 and $n=$ a multiple of 14 or for $m=35$ or $n=14$ <br> for a correct pair of values, eg $m=35$ and $n=14$ or $m=35$ and $n=28$ or $m=105$ and $n=14$ | $\begin{aligned} & m=35, n=14,28,42,56,84, \ldots \\ & m=105, n=14,28,56,98, \ldots \end{aligned}$ |
| 9 (a) <br> (b) | $\begin{gathered} (9),-4,-5,0,5, \\ (4),(-9) \end{gathered}$ <br> Graph drawn | $\begin{aligned} & \mathrm{B} 2 \\ & \text { (B1 } \\ & \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$ | for all 4 values correct <br> for 2 or 3 correct values) <br> for a fully correct graph <br> ft (dep on B1 in (a)) for plotting at least 5 of the points from their table correctly) | Accept a freehand curve drawn that is not made of line segments <br> Ignore anything outside the required range |


| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 10 (a) | $\frac{1}{16}$ | M1 | for method to find probability of getting a score of 5, eg $\frac{10}{6+8+9+7+10}\left(=\frac{10}{40}\right) \mathrm{oe}$ | Accept any equivalent fraction, decimal form $0.06(25)$ or 0.063 , percentage form $6(.25) \%$ or 6.3\% <br> Ignore subsequent incorrect attempts to write the correct answer in a different form. |
|  | 15 | $\mathrm{A} 1$ | for $\frac{1}{16}$ oe |  |
| (b) |  | M1 | for method to find the proportion of 1 s , eg $\frac{6}{40}$ oe |  |
|  |  | A1 | cao |  |
| 11 | Enlargement scale factor $\frac{1}{3}$ centre $(0,2)$ | B2 <br> (B1 | for enlargement scale factor $\frac{1}{3}$ centre $(0,2)$ for any 2 aspects) | No marks if more than one transformation is given |
| 12 | $x=3, y=-2$ | M1 | for a correct method to eliminate either variable or rearrangement of one equation leading to substitution (condone one arithmetic error) | Trial and improvement methods score 0 marks unless both $x$ and $y$ are correct |
|  |  | A1 | for either correct value of $x$ or correct value of $y$ |  |
|  |  | M1 | (dep M1) for a correct substitution of found value into one of the equations or a correct method leading to the second value (condone one arithmetic error) |  |
|  |  | A1 | $x=3, y=-2$ |  |


| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 13 | $\begin{gathered} t=20 \\ p=4,50 \end{gathered}$ | M1 <br> M1 <br> A1 | for method to find a missing value of $p$, eg $\frac{100}{25}$ oe $(=4)$ or $\frac{100}{2}$ oe $(=50)$ <br> or for $p=\frac{100}{t}$ <br> for method to find the missing value of $t$, eg $100 \div \frac{5}{1}(=20)$ or for finding both missing values of $p$ <br> cao | Marks for 4 or 50 can only be awarded if in correct cell of table or unambiguous in working <br> Mark for 20 can only be awarded if in correct cell of table or unambiguous in working |
| 14 | Histogram drawn | B3 <br> (B2 (B1 | for fully correct histogram, eg relative heights $1,5,6,1.5$ for 3 correct bars <br> or <br> for frequency $\div$ class interval for at least 3 frequencies and 2 correct bars of different widths) <br> for 2 correct bars of different widths <br> or <br> for frequency $\div$ class interval for at least 3 frequencies) | Frequency densities are 1, 5, 6, 1.5 |
| 15 | 40 | P1 <br> P1 <br> A1 | for a start to the process, eg $\frac{x}{360} \times 2 \times \pi \times 18(=4 \pi)$ oe or $\frac{4 \pi}{2 \times \pi \times 18}\left(=\frac{x}{360}\right)$ oe for a complete process to find $x$, eg $\frac{4 \pi}{36 \pi} \times 360$ oe cao | Any arrangement equivalent to this equation acceptable |




| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 18 | Result shown | M1 <br> M1 <br> C1 | for angle $O B C=90$ <br> or for method to find angle $O B A$ or angle $O A B$, eg $\frac{180-x}{2}$ oe or for angle $A B C=90$ - angle $O B A$, eg angle $A B C=90-y$ <br> or marks point on circumference and draws triangle using $A$ and $B$ and point marked <br> for method to find angle $A B C$, eg $90-$ " $\frac{180-x}{2}$ " oe or for $x=180-2 \times$ angle $O B A$, eg $x=180-2 y$ or for angle at circumference $=\frac{1}{2} x$ for correct algebra leading to angle $A B C=\frac{1}{2} x$ and one circle theorem relevant to their method, eg The tangent to a circle is perpendicular to the radius <br> OR <br> for $x=180-2 y$ and angle $A B C=90-y$ and one circle theorem relevant to their method, <br> eg The tangent to a circle is perpendicular to the radius <br> OR <br> for angle $A B C=\frac{1}{2} x$ and one circle theorem relevant to their method, eg The angle at the centre of a circle is twice the angle at the circumference <br> or Alternate segment theorem | Angles must be clearly labelled on the diagram or otherwise identified. Correct method can be implied from angles on the diagram if no ambiguity or contradiction. <br> Underlined words need to be shown; reasons need to be linked to their method. |


| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 19 | $-\frac{1}{2} \pm \frac{1}{2} \sqrt{2}$ | P1 | for using a common denominator, eg $\frac{x+1}{x(x+1)}-\frac{x}{x(x+1)}(=4)$ or $\frac{x+1-x}{x(x+1)}(=4)$ <br> or $x+1-x=4 x(x+1)$ |  |
|  |  | P1 | for expanding and rearranging to get $4 x^{2}+4 x-1(=0)$ | Note we don't need to see " $=0$ "; just the LHS is sufficient <br> Accept other forms of the 3 term quadratic, eg $4 x^{2}+4 x=1$ |
|  |  | P1 | (dep P1) ft for a method to solve their 3 term quadratic equation, eg $\frac{-4 \pm \sqrt{4^{2}-4 \times 4 \times-1}}{2 \times 4}$ or $4\left[\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right]-1=0 \mathrm{oe}$ | Correct use of formula or completing the square |
|  |  | A1 A1 | for values of $x$, eg $\frac{-4 \pm \sqrt{32}}{8}$ or $\pm \sqrt{\frac{1}{2}}-\frac{1}{2}$ oe for $-\frac{1}{2} \pm \frac{1}{2} \sqrt{2}$ oe in the form $a \pm b \sqrt{2}$ where are $a$ and $b$ are fractions | Accept $a=-\frac{1}{2}, b=\frac{1}{2}$ or $a=-\frac{1}{2}, b=-\frac{1}{2}$ |


| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 20 | $\frac{62}{110}$ | P1 | for process to find a probability of 2 cards of different colours, eg $\frac{3}{11} \times \frac{7}{10}$ or $\frac{3}{11} \times \frac{1}{10}$ or $\frac{7}{11} \times \frac{3}{10}$ or $\frac{7}{11} \times \frac{1}{10}$ or $\frac{1}{11} \times \frac{3}{10}$ or $\frac{1}{11} \times \frac{7}{10}$ oe or $\frac{3}{11} \times \frac{8}{10}$ oe or $\frac{7}{11} \times \frac{4}{10}$ oe or $\frac{1}{11} \times \frac{10}{10}$ oe | May see fraction with denominator 110 |
|  |  | P1 | for a complete process, eg $\frac{3}{11} \times \frac{7}{10}+\frac{3}{11} \times \frac{1}{10}+\frac{7}{11} \times \frac{3}{10}+\frac{7}{11} \times \frac{1}{10}+\frac{1}{11} \times \frac{3}{10}+\frac{1}{11} \times \frac{7}{10}$ oe or $\frac{3}{11} \times \frac{8}{10}+\frac{7}{11} \times \frac{4}{10}+\frac{1}{11} \times \frac{10}{10}$ oe |  |
|  |  | A1 | $\text { for } \frac{62}{110} \text { oe }$ <br> OR | Accept equivalent fraction, decimal form $0.56(36 \ldots)$ or percentage form $56(.36 \ldots) \%$ |
|  |  | P1 | for process to find a probability of 2 cards of the same colour, eg $\frac{3}{11} \times \frac{2}{10}$ or $\frac{7}{11} \times \frac{6}{10}$ or $\frac{1}{11} \times \frac{0}{10}$ oe |  |
|  |  | P1 A1 | for a complete process, eg $1-\frac{3}{11} \times \frac{2}{10}-\frac{7}{11} \times \frac{6}{10}\left(-\frac{1}{11} \times \frac{0}{10}\right)$ oe for $\frac{62}{110}$ oe | Accept equivalent fraction, decimal form $0.56(36 \ldots$ ) or percentage form 56(.36...)\% |
|  |  |  | SC B1 for answer of $\frac{62}{121}$ (replacement) |  |



| Paper: 1MA1/1H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 23 (a) | 4000 | P1 | for process to identify the common ratio, eg $400 \sqrt{5} \div 200(=2 \sqrt{5})$ or $200 \div 400 \sqrt{5}\left(=\frac{1}{2 \sqrt{5}}\right)$ or for a process to find the next term of the sequence, eg $200 \times(200 \div 10)$ | May use any 2 consecutive terms |
|  |  | A1 | cao |  |
|  | 5 | P1 | for process to find the ratio of the 4 th and 6 th terms, eg $\frac{5 \sqrt{2}}{8} \div \frac{5 \sqrt{2}}{4}\left(=\frac{1}{2}\right)$ or $\frac{5 \sqrt{2}}{4} \div \frac{5 \sqrt{2}}{8}(=2)$ or for finding that the 2 nd term is $\frac{5 \sqrt{2}}{2}$ |  |
|  |  | P1 | for complete process to find 1st term, eg $\frac{5 \sqrt{2}}{4} \div\left(\frac{1}{\sqrt{2}}\right)^{3}$ |  |
|  |  | A1 | cao | Award 0 marks for a correct answer with no supportive working |
| 24 (a) | 1:4 | P1 | for process to equate the two volumes, $\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi r^{2} h$ | Can be implied by $3 r=l$ |
|  |  | A1 | cao |  |
|  | $1: \sqrt{8}$ | P1 | for process to equate surface areas, eg $4 \pi r^{2}=\pi r^{2}+\pi r l$ |  |
|  |  | P1 | for process to substitute $l=\sqrt{h^{2}+r^{2}}$, eg $4 \pi r^{2}=\pi r^{2}+\pi r \sqrt{h^{2}+r^{2}}$ |  |
|  |  | P1 | for process to isolate term in $r^{2}$ after substituting for $l$, eg $8 r^{2}=h^{2}$ |  |
|  |  | A1 | for $1: \sqrt{8}$ |  |

Question 9(b)


## Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 1H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme. Notes apply to both MLP papers and Braille papers unless otherwise stated.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

| PAPER: 1MA1_1H |  |  |  |
| :---: | :---: | :---: | :---: |
| Question |  | Modification | Mark scheme notes |
| 5 |  | Wording added 'Look at the table for Question 5 in the Diagram Booklet.' Wording added 'in the Diagram Booklet'. Table enlarged. | Standard mark scheme |
| 6 | (a) | Text left aligned. Values changed: $a$ to $p ; b$ to $q ; c$ to $r$ | Standard mark scheme but note change of letter |
| 6 | (b) | Text left aligned. Values changed: $m$ to $w ; n$ to $x ; p$ to $y$ | Standard mark scheme but note change of letter |
| 7 |  | Wording added 'Look at Diagram 1 and Diagram 2 for Question 7 in the Diagram Booklet. You may be provided with a model. It is not accurate.' Wording added 'Diagram 1 and the model show'. <br> Wording added 'that'. Diagram enlarged. <br> Base view added with measurements. Wording added 'Diagram 2 shows the base view.' <br> Frame removed from formula and moved above the diagram to the left | Standard mark scheme |
| 9 | (a) | Wording added 'below'. Wording added 'There are four spaces to fill.' Table turned vertical and enlarged. | Standard mark scheme |
| 9 | (b) | Wording added 'Look at the diagram for Question 9(b) in the Diagram Booklet.' Wording added 'in the Diagram Booklet'. Diagram enlarged. Axes labels moved above the vertical axis and right on the horizontal axis. Open headed arrows. Black grid lines. Small squares removed. | Standard mark scheme |
| 10 |  | Wording added 'Look at the diagram and table for Question 10 in the Diagram Booklet.' The word ' $a$ ' removed and replaced with 'the'. Wording added 'in the Diagram Booklet'. Diagram enlarged. Spinner straightened and spike removed. Dot added to the centre. Table turned vertical and enlarged. <br> The wording 'Here are her results' removed and replaced with 'Her results are shown in the table in the Diagram Booklet.' | Standard mark scheme |
| 11 |  | Wording added 'Look at the diagram for Question 11 in the Diagram Booklet. It shows Shape P and Shape Q.' Labels moved above the shapes. Shapes relabelled as 'Shape P' and 'Shape Q'. Wording added 'in the Diagram Booklet'. Diagram enlarged. Shading changed. Axes labels moved above the vertical axis and right on the horizontal axis. Open headed arrows. Black grid lines. | Standard mark scheme |
| 13 |  | Wording added 'Look at the table for Question 13 in the Diagram Booklet.' Wording added 'There are three spaces to fill.' Table turned vertical and enlarged. | Standard mark scheme |



| PAPER: 1MA1_1H |  |  |  |
| :---: | :---: | :---: | :---: |
| Question |  | Modification | Mark scheme notes |
| 24 | (a) | Wording added 'Look at Diagram 1, Diagram 2, Diagram 3, Diagram 4 and Diagram 5 for Question 24(a) in the Diagram Booklet. You may be provided with models. They are not accurate.' <br> Diagrams enlarged and added for 2D representation of sphere, cone side and cone base. The wording 'Here is a solid sphere and a solid cone' removed and replaced with 'Diagram 1 and model 1 show a solid sphere. Diagram 2 shows a 2D representation of the sphere. Diagram 3 and Model 2 show a solid cone. Diagram 4 shows a 2D representation of the cone. <br> Diagram 5 shows the base of the cone.' <br> Wording added 'radius of the sphere $=$ radius of the base of the cone $=r$ '. <br> Wording added 'vertical height of the cone $=\mathrm{h}$ '; Wording added 'Volume of sphere $=\frac{4}{3} \Pi r^{3}$ ', <br> Wording added 'Volume of cone $=\frac{1}{3} \Pi r^{2} h$ ' <br> Dashed lines made longer and thicker. Diagram headings moved above the diagrams. <br> Labels moved to the left side. Models provided. | Standard mark scheme |
| 24 | (b) | Wording added 'Look at Diagram 1, Diagram 2, Diagram 3, Diagram 4 and Diagram 5 for Question 24(b) in the Diagram Booklet. You may be provided with models. They are not accurate. They show a different solid sphere and solid cone.' <br> The wording 'Here is a different solid sphere and a different solid cone.' Removed. <br> Diagrams enlarged and added for 2D representation of sphere, cone side view and cone base' <br> Wording added 'Diagram 1 and model 1 show a solid sphere. Diagram 2 shows a 2D <br> representation of the sphere. Diagram 3 and Model 2 show a solid cone. Diagram 4 shows a 2D <br> representation of the cone. Diagram 5 shows the base of the cone.' <br> Wording added 'radius of the sphere $=$ radius of the base of the cone $=r$ '. <br> Wording added 'slant height of the cone $=1$ '; 'Surface area of sphere $=4 \Pi r^{2}$ ' <br> Wording added 'Curved area of cone $=\Pi r l '$ <br> Dashed lines made longer and thicker. Diagram headings moved above the diagrams. <br> Labels moved to the left side. Models provided. | Standard mark scheme |

