

Visit <u>http://www.mathsmadeeasy.co.uk/</u> for more fantastic resources.

Answer	Marks
 a) to look for evolutionary relationships between organisms	1 mark
ii) -Short single strand of DNA - has complementary base sequence to a particular gene -If the specific gene is present to probe will bind/hybridise to the strand of DNA -Probe has a label attached for detection (either UV or radioactive)	4 marks
 iii) - The DNA strand was broken up by restriction enzymes DNA fragments were incubated with the labelled DNA probe Fragments were then separated by size via gel electrophoresis Gel was the exposed to UV light to see if the gene was present/ probe had attached 	3 marks

Probes and Hybridisation

iv) - restriction enzymes cut the DNA into fragments -these are then separated by gel electrophoresis -The size of the fragment determines the location of the cut sites -This forms a restriction map which indicates the recognition sites of the restriction enzymes	3 marks
b) i) A - Single strand of DNA that is being sequenced B - DNA polymerase - to join the nucleotides together C-Free nucleotides - to build up new DNA strand D-Labelled Nucleotide - once this has bound, no other nucleotides can attach to the chain E - Primer - to start the nucleotides binding	5 marks
ii) Each test tube will contain a different labelled modified nucleotide (A/T/C/G)	1 mark
iii) The terminator nucleotide joins randomly at different points along different strands creating different lengths	2 marks
iv) T G A C G G A T C	2 marks
2. a) i) Multiple genes can be screened for at the same time	1 mark

Visit <u>http://www.mathsmadeeasy.co.uk/</u> for more fantastic resources.

b) i) – it would help her to decide whether to be screened or not -If positive – she could be informed of her chances of developing cancer in the future -She would be better informed to make decisions about preventative measures – e.g. mastectomy	3 marks
ii) – identify the specific mutation that caused the cancer -the treatment can then be targeted to that mutation and its specific interactions on the cell -it is more efficient and increases the chances of survival -example of personalised medicine	3 marks